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Abstract

We present NIER, a video conferencing system that can adaptively
maintain a low bitrate (e.g., 10-100 Kbps) with reasonable visual
quality while being robust to packet losses. We use key-point-based
deep image animation (DIA) as a key building block and address a
series of networking and system challenges to make NIER practi-
cal. Our evaluations show that NIER significantly outperforms the
baseline solutions.
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1 Introduction

Video conferencing requires a substantial amount of network band-
width. For example, Zoom requires at least 1.2 Mbps bandwidth for
both uplink and downlink in a 1-on-1 video call at 720p [1], which
amounts to ~1.05 GB of data for a one-hour session. Low-bitrate
video conferencing thus benefits multiple stakeholders: streaming
platforms spend less on network infrastructures; cellular providers
see reduced peak-hour traffic; mobile customers pay less over me-
tered links; and most importantly, end users perceive better quality-
of-experience (QoE) under challenging network conditions.

A promising approach to realize low-bitrate video conferencing
with decent QoE is to stream low-resolution video frames using
traditional codecs such as H264 [12], HEVC [17], and VPX [4], and
then apply image enhancement techniques like super-resolution
(SR) [16] at the receiver to boost visual quality. One limitation of
this approach is that, for efficiency, all traditional codecs incur high
temporal dependencys; i.e., they produce P-frames whose decoding
depends on prior I- or P-frames. As a result, a single packet loss
can lead to the undecodability of multiple consecutive frames. Note

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGCOMM °25, Coimbra, Portugal

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1524-2/2025/09

https://doi.org/10.1145/3718958.3750518

°Google °Tsinghua University

that packet losses are prevalent in challenging network conditions
— a key usage scenario of low-bitrate video streaming.

There are a few techniques to counteract packet losses in real-
time video communication, such as retransmissions, forward error
correction (FEC) [10, 13], error concealment [19], and loss-resilient
neural codecs [7, 9]. However, they suffer from various limitations
such as prolonged latency, extra bandwidth cost, low compression
efficiency, and high compute overhead, respectively.

In this work, we develop NIER, a practical low-bitrate video con-
ferencing solution. It can adaptively maintain a low bitrate between
10 and 100 Kbps with reasonable visual quality while being robust
to packet losses. Satisfying these design requirements makes NIER
suitable for a wide range of usage scenarios, in particular over
challenging/metered networks. Under the hood, NIER leverages
key-point-based deep image animation (DIA) as a key building
block, where the sender transmits sparse key-points alongside a
reference image, and the receiver reconstructs the original video
frames by animating the reference image using the key-points’ mo-
tion. To make DIA practical, NIER addresses a series of challenges
in networking and system dimensions, including robustly updat-
ing reference frames, adapting to fluctuating bandwidth, handling
varying packet loss rates, and achieving line-rate frame processing
on commodity client devices.

We implement NIER’s prototype in 13+ lines of code. Our exten-
sive evaluations (including an IRB-approved user study involving 20
participants) demonstrate that NIER considerably outperforms sev-
eral baseline solutions (traditional video codecs, super-resolution-
enhanced video conferencing [16], forward error coding (FEC) [13],
loss-resilient neural codec [7], and naive application of key-point-
based DIA) in terms of end-to-end latency, decodable frame ratio,
frame rate, video quality, and/or users’ quality-of-experience (QoE).

While focused on key-point-based DIA, NIER’s high-level design
principles are potentially applicable to other neural-based video
streaming systems that involve heterogeneous streams (e.g., [7, 16]).

2 Background and Motivation

Deep image animation (DIA) was originally designed to animate
a static image using the motion and deformation (e.g., the optical
flow [5] between two frames) of a video clip [14, 18, 20]. Recent stud-
ies [2, 11] have explored using key-point-based DIA in low-bitrate
video calls, where motion and deformation are “encoded” as sparse
key-points (consisting of coordinates and attributes) transmitted
from the sender. The receiver uses these key-points alongside a
high-quality “reference frame” to generate corresponding frames
through a pre-trained DIA model. Compared to traditional pixel-
based codecs, the key-point representation bears a much lower
bitrate. In addition, since each frame is independently encoded into
key-points, packet losses affect only corresponding frames, rather
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Figure 1: The system architecture of NIER.

than propagating errors across multiple frames. However, existing
studies [2, 8, 11] focus on improving key-point-based DIA models
while overlooking critical challenges in the networking and system
dimensions:

Challenge 1. When and how to transmit a reference frame? A refer-
ence frame serves a similar role to an I-frame in traditional codecs,
as it provides a more recent (and oftentimes better) “baseline” for
frame generation. However, key differences between them create
unique yet underexplored optimization opportunities — in partic-
ular, when and how to transmit a reference frame. In contrast,
existing approaches [2, 11] typically send a reference frame only
once at the beginning, causing significant quality drop over time.
Challenge 2. How to adapt DIA to the fluctuating bandwidth? This
can be regarded as “Adaptive Bitrate (ABR) streaming” [6] for DIA,
which is largely an uncharted territory.

Challenge 3. How to handle packet losses? Likewise, there lack
methods allowing DIA to dynamically adapt to varying packet loss
rates, limiting its robustness in the real world.

Challenge 4. How to make DIA practical on commercial off-the-shelf
(COTS) devices? Our measurements show that state-of-the-art key-
point-based DIA [15] exhibits poor performance on COTS devices
(e.g., 11 FPS with 100+ ms frame processing latency on MacBook
Air 2020 [3]), making it falling far short for practical use.

3 System Design of NIER

To the best of our knowledge, NIER is a first practical low-bitrate
video conferencing system enhanced by key-point-based DIA. As
shown in Figure 1, NIER maintains two streams between the sender
and receiver: a key-point stream and a reference stream. It achieves
low bitrate by transmitting most video frames as key-points, with
adaptive reference frame delivery as needed. We elaborate the
design of NIER below.

e To address Challenge 1, NIER judiciously updates the refer-
ence frame by jointly considering the bandwidth constraint and
visual quality impact. A challenge here is that the visual quality
groundtruth of a to-be-generated frame is unknown. We thus devise
a lightweight approach to predict the visual quality by leveraging a
new metric called self-similarity, i.e., the similarity between a to-
be-generated frame and the reference frame. We find that the self-
similarity is highly correlated with the visual quality groundtruth
and can be easily derived on the sender side, making it a good
predictor. In addition, instead of discarding old reference frames,
NIER opportunistically reuses them to further boost the QoE.
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e To address Challenge 2, our key insight is that the key-point
stream and the reference stream, which compete for bandwidth,
exhibit distinct characteristics: the key-point stream demands low
bandwidth but requires immediate delivery, whereas the reference
stream consumes high bandwidth yet remains delay-tolerant. NIER
hence employs different strategies for them. For the key-point
stream, it adopts a layered encoding scheme that encodes the key-
point data into a base layer and three enhancement layers. At
runtime, enhancement layers can be flexibly dropped to meet the
bandwidth budget. For the reference stream, NIER reshapes its
traffic pattern to make it less bursty and more elastic.

e To address Challenge 3, We make two observations: (1) similar
to pixel-based videos, key-points exhibit temporal locality; and
(2) using a recent reference frame with some missing pixels can
oftentimes yield a higher generation quality than using an old non-
corrupted reference frame. Therefore, for the key-point stream,
NIER applies lightweight approaches to infer the missing key-points
on the receiver side using historical data when packet loss occurs.
For the reference stream, NIER reconstructs a reference frame from
partially received segments with negligible overhead.

e To address Challenge 4, NIER applies a series of optimizations,
including removing redundant computation, pruning/modifying
DNN blocks, reducing input data, and pipelining processing stages.
Many of these optimizations go beyond standard deep learning
inference optimizations by considering the unique characteristics
of key-point-based DIA.

4 Implementation and Evaluation

We implement the above components and integrate them into a
deployable prototype comprising 13K+ lines of code. We highlight
key evaluation results as follows.

e Under ultra-low bandwidth (< 50 Kbps) with a 50 ms one-way
delay, NIER achieves 205 (225) ms 50th (95th) percentile (P50 and
P95) end-to-end latency, a 99.8% (99.9%) reduction compared to a
baseline design where key-point-based DIA is applied in a straight-
forward manner according to the computer vision literature [2, 11].
In addition, NIER improves the decodable frame ratio by 11.47%
under a 10% packet loss rate and improves the visual quality (in
PSNR) by 2.03 dB.

e Compared to a SOTA low-bitrate video conferencing solution
enhanced by super-resolution [16], NIER improves the P50 (P95)
end-to-end latency by up to 98.5% (99.1%), and achieves up to 159x
improvement in decodable frame ratio, with a comparable or even
better visual quality.

e Compared to a SOTA loss-resilient neural codec [7] and a SOTA
FEC scheme [13] for real-time streaming, NIER exhibits much bet-
ter coding efficiency, in terms of one or more metrics (processing
latency, frame rate, and data usage, etc.).

o Our IRB-approved user trial involving 20 subjects suggests that
NIER outperforms other low-bitrate video conferencing solutions,
which uses H264, VP8 and super-resolution [16], by 2.0, 1.45, and
1.7 (in the scale of 1-5), respectively.
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